
Collaborative Email-Spam Filtering with the Hashing-Trick

Joshua Attenberg
Polytechnic Institute of NYU

Five MetroTech Center
Brooklyn NY, 11201

josh@cis.poly.edu

Kilian Weinberger, Anirban Dasgupta
Alex Smola, Martin Zinkevich

Yahoo! Research
4401 Great America Pkwy.

Santa Clara, CA 95054 USA
{kilian, anirban, smola,
maz}@yahoo-inc.com

ABSTRACT
This paper delves into a recently proposed technique for col-
laborative spam filtering [7] that facilitates personalization
with finite-sized memory guarantees. In large scale open
membership email systems most users do not label enough
messages for an individual local classifier to be effective,
while the data is too noisy to be used for a global filter across
all users. Our hybrid global/individual classifier is particu-
larly effective at absorbing the influence of users who label
emails very differently from the general public – because of
strange taste or malicious intent. We can accomplish this
while still providing sufficient classifier quality to users with
few labeled instances. Our proposed technique can be used
with a variety of classifiers and can be implemented in a
few lines of code. We verify the efficacy of our proposed
technique on a popular web spam benchmark data set.

1. INTRODUCTION
Collaborative spam filtering in open membership systems,

such as Yahoo MailTM, depends on user generated label in-
formation. Users provide feedback by labeling emails as
spam or not-spam. These labels are then used to train a
spam filter. Although the majority of users provide very
little data, as a collective the amount of training data is
very large (many millions of emails per day). Unfortu-
nately, there is substantial deviation in users’ understanding
of what constitutes spam and non-spam. As a result, spam
filtering based on a global classifier will be sub-optimal.
Conversely, there is often insufficient personal information
to train an individual classifier for all users.

In this paper we adopt the hashing-trick [7, 8] to build
a personalized global classifier. The hashing-trick maps the
global and all personal classifiers into a single low-dimensional
feature space, in which we train a single weight vector cap-
turing the individual aspects of each user.

The hashing-trick is a natural fit for spam filtering. Nearly
all commonly used spam classifiers, such as Näıve Bayes,
logistic regression and support-vector machines [3] require
emails be represented in the bag-of-words format. A ma-
jor disadvantage of the bag-of-words representation is the
necessity of a dictionary data structure for mapping words
to vector indices. In collaborative spam filtering, the set of
possible word tokens is generally very large. As a result, the

CEAS 2009 - Sixth Conference on Email and Anti-Spam July 16-17, 2009,
Mountain View, California USA. A full version of this work is available on
the website of the primary author.

dictionary can use up a significant portion of a servers’ mem-
ory. Furthermore, the dynamic nature of language in both
spam and not-spam requires that the dictionary adapt to
new words, essentially growing over time. The hashing-trick
overcomes this obstacle by rendering the dictionary unnec-
essary; words are hashed directly to indices. While hash
collisions may result in several words being mapped into the
same index, and therefore being falsely considered identical,
such collisions rarely affect classification results. The deci-
sion whether an email is spam and not-spam is rarely based
on a single word but on a combination of many slightly in-
dicative words. In fact, without a dictionary much more
memory is available to store the weights of the classifier,
extra space that may be used to improve classifier perfor-
mance, as demonstrated empirically [7, 2, 8].

In [7], we used the hashing trick to hash multiple clas-
sifiers into the same space, allowing us to obtain a large
number of local classifiers with negligible additional compu-
tational or memory requirements, and established it empir-
ically with real data. The resulting hybrid classifier over-
comes the tough choice between local and global classifi-
cation. In this extension, we also show (using the TREC
data set with synthetic labels) how this hybrid solution can
handle malicious noise.

2. HASHING-TRICK
The hashing-trick [7, 8] is a method to scale up linear

learning algorithms. The main idea is quite simple. In-
stead of generating bag-of-word feature vectors through a
dictionary that maps tokens to word indices, one uses a
hash-function that hashes words directly into a feature vec-
tor. The hash function h : {Strings} → [1..m] operates
directly on strings and should be approximately uniform1.
In [7] we propose to use a second independent hash function
ξ : {Strings} → {−1, 1}, which determines if the particu-
lar hashed-dimension of a token should be incremented or
decremented. This causes the hashed feature vectors to be
unbiased. Algorithm 2 shows a pseudo-code implementation
of the hashing-trick that generates a hashed bag-of-words
feature vector for an email.

Personalization:
The above hashing-trick can be effectively used to train
spam classifiers with bounded memory requirements [7]. How-

1For the experiments in this paper we
used the public domain implementation from
http://burtleburtle.net/bob/hash/doobs.html

hashingtrick([string] email)

~x = ~0
for word in email do
i = h(word)
~xi = ~xi + ξ(word)

end for
return ~x

ever, even more powerful is the extension allowing the for-
mation of multiple classifiers on a data set [7]. In the spam-
classification setting, this technique provides a handle to
tackle the elusive goal of personalization of spam-filters in
the presence of widely uneven amounts of labeled data per
user. The main issues in tackling personalization are twofold
– the large number of users in a typical email system cre-
ate an enormous blowup in the number of feature-weights
needed to be stored, and the “cold-start” problem, where
new or unengaged users have insufficient labeled emails to
generate an effective personal spam filter. In practice, both
problems become egregious for large-scale email-providers
— they have millions of email users and so the resulting
storage increases million-fold when trying to personalize, yet
most email users are notoriously lazy in labeling emails as
“spam” or “not-spam”, leaving them forever in the “cold-
start” phase.

Using a single global classifier, on the other hand, is both
efficient in terms of the space-complexity and in terms of
providing new users with a reasonable spam classifier. While
providing efficient solutions to these two issues, a single
global classifier is problematic for spam-filtering due to the
issue of noisy feedback. It is well known that users differ
significantly in their view of spam and not-spam, especially
in the case of bulk and business emails. Furthermore, it is
fairly regular for spammers to infiltrate the user base using
many different accounts so as to be able to provide feed-
back that is designed to confuse the spam-classifier. As our
experiments will show, the global classifier is susceptible to
even a small fraction of users giving noisy feedback.

We combat the above problems by using the hashing-trick
to efficiently create a large instance of multitask learning– a
setting where multiple related yet slightly different concepts
are learned simultaneously. For the thousands of users, U ,
who users who participate in the filter’s feedback system
labeling messages as spam or not-spam, an individualized
spam filter, ~wu is trained. Additionally, a global classifier
(w0) is trained from the aggregate labels compiled from all
users. This provides a consensus filter used to overcome
the sparsity in training data resulting from the disparity in
the amount of labeled content per user. An email can now
classified according to the additive scores of w0 and wu.

If the total number of features is d, then storing all the
above vectors would need O(d × (|U | + 1)) space. How-
ever, as words appear in accordance with Zipf’s law, most
users will only encounter a small fraction of the total vo-
cabulary. As a result, the |U |+ 1 classifiers necessary for a
hybrid global/local spam filter are extremely compressible.
We will compress them by hashing all weight vectors into a
single weight vector ~w. In order to this, leverage a major
strength of the hashing trick– approximate preservation of
orthogonal vectors. This allows us to learn many email fil-
ters simultaneously in a single hashed space. In the context
of personalization, we make use of this property by hash-

ing each token twice: once in it’s original form, and once
with the labeler’s user-id prepended to it. See Algorithm 2
for details. Intuitively, this adds individualized tokens for
each particular user. Imagine for example that user “bar-
ney” does like emails containing the word “viagra”, whereas
the majority of users won’t. The personalized hashing trick
will learn that “viagra” itself is a spammy word, whereas
“viagra barney” is a not-spammy word.

personalized hashingtrick(string userid, [string] email)

~x = ~0
for word in email do
i = h(word)
~xi = ~xi + ξ(word)
j = h(word ◦ userid)
~xj = ~xj + ξ(word ◦ userid)

end for
return ~x

3. EXPERIMENTAL SETUP AND RESULTS
To assess the validity of our proposed techniques, we con-

duct a series of experiments on the freely distributed trec07p

data set, a standard benchmark set for spam filter perfor-
mance evaluation. This dataset contains 75, 419 labeled and
chronologically ordered emails taken from a single email
server over four months in 2007 and compiled for TREC
spam filtering competitions [1]. E-mails are either spam (or
positive) or ham (or negative).

We divided the TREC data set temporally, using the first
75% of the e-mails as training, and testing on the last 25%
of the e-mails. For all our experiments we used the Vow-
pal Wabbit [5] (VW) implementation of stochastic gradient
descent on a square-loss2.

In order to appraise the performance of the hash-trick, we
tokenize the bodies of the e-mails and create binary features
indicating the presence or absence of each feature in the
email body. We then use VW on these tokenized e-mails,
using a hashtable of a size between 25 and 212. For each of
these sets of hashed feature vectors, we train and test a sin-
gle, global classifier, and then analyze the receiver operating
characteristic (ROC) curve [6]. We evaluated classifiers by
choosing the point on the curve where the ham misclassifi-
cation rate (the fraction of ham e-mails classified as spam
e-mails, false positive rate, or HMR) was 1%.3

All figures presented below display the spam catch rate
(the fraction of spam e-mails that were classified as spam e-
mails, true positive rate, or SCR) when the HMR is 1%. We
believe this metric accurately reflects a realistic email filter
setting where misclassifying ham messages as spam creates
an extremely negative overall system experience. While this
metric is highly correlated with the area under the ROC

2We would like to point out that the hashing-trick is in-
dependent of the type of classifier and could be applied to
almost all commonly used spam filters. Although we are
only presenting results obtained with the Vowpal Wabbit,
similar trends should be observed with other classifiers. As
hash function we use the public-domain implementation by
Jenkins [4]
3In order to tune the algorithm to get a false positive rate of
1%, it is necessary in practice to reserve a holdout set from
the training set.

Figure 1: Spam catch rate for TREC07p with the
number of hash bins r ranging from 25 to 212.

curve (AUC), the AUC encodes much additional irrelevant
information for this particular task.

Figure 1 presents the SCR at 1% HMR. Note using 28 hash
bins will still result in achieving 80% SCR. This increases to
over 90% when using 210 hash bins. With 212 hash bins, the
classifier achieves a 99.57% SCR with a 1% HMR, with an
area under the ROC curve (AUC) of 0.99829. Given that
the full TREC data set has a total of 508, 531 unique terms
this means that using a weight vector of 0.8% the size of
the full set obtains essentially the same performance as one
using all dimensions.

3.1 Simulating Malicious Labeling Activity
In order to replicate the influence of malicious email la-

belers that abound in a real-world spam filtering setting, we
chose to actively modify the label assignments from those
provided by human judges in the TREC data set. In order
to mimic the effects of this adversarial labeling, a number
of “quality” users are initially chosen at random, and their
labeled emails are assembled to create a baseline data set.
The remaining users are then considered “malicious”. The
emails of these malicious users are re-labeled, with labels
chosen uniformly at random.4 New data sets can now be
created with the inclusion of varying portions, p, of mali-
cious users. For the purpose of this paper, we chose p ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5}. By varying the number of mali-
cious users, we see trends in spam filter performance. All
modified data sets used in this project are publicly available
at http://cis.poly.edu/~josh/spam/.

Label modification for our adversarial simulation is per-
formed at the granularity of an individual user — a given
user either has their natural labeling assignment or all of
their labels are randomly set. By delineating the data set
according to users, we simulate the realistic setting where
many users label according to their own preference for clean
inboxes, while some users are in fact artificial software con-
structs, programmed to degrade spam filtering systems such
that favored emails will escape detection and reach the re-
maining benevolent user community. Because it is difficult
to define what constitutes a good label assignment for a user

4Note that random labels are nastier to deal with than sim-
ply flipped labels-if the labels are flipped, then the classifier
“just” learns which users has flipped labels, and then flip
them back.

Figure 2: Performance of global and hybrid classi-
fiers at varying degrees of maliciousness. We used
220 hash bins in the experiments.

who is habitually malicious, we exclude these users from the
test set. In this way, we are strictly measuring the malicious
users’ influence on classifier accuracy as seen by legitimate
users in various spam filtering scenarios.

With p = 0.2, the global classifier with 212 hash bins is
reduced to 86% SCR at 1% HMR. With the quantities of
spam emails sent daily, this is unacceptable.

3.2 Mitigating Malicious Users by Hashing
We note that in our experimental framework, as in most

reasonable real-world open email systems, the quality of la-
beling varies from person to person. By utilizing individ-
ual classifiers to discriminate spam, consistently malicious
or otherwise low-quality labelers can only exert influence
on their local classifier, effecting the labeling of spam which
they may see. However, most users label one or two e-mails–
too few emails to train an effective individual classifier. In
order to achieve the benefits of personalized classification
while maintaining good general performance for most users,
we adopt a hybrid, global + individual classifier. As dis-
cussed in Section 2, feature hashing allows simple personal-
ization by projecting multiple classifiers onto a single feature
space in Rr with little interaction.

Figure 2 presents a comparison in classifier performance
under varying malicious loads by global and hybrid classi-
fiers. On the unmodified TREC data set, with 0% malicious
users, global and hybrid classifiers both offer similarly excel-
lent performance. However, as the level of malicious activ-
ity rises to 30%, the global classifier degrades more rapidly:
with 30% malicious users, the global classifier has 83% accu-
racy, and the hybrid classifier has 94% accuracy. The purely
local classifier performs very badly, mostly because several
users have no training data. Note that in this experiment
r = 220 was used to cope with the increased information
presented by individualized classifiers. While this is larger
than the experiment presented in Figure 1, if each weight re-
quires storage as a double precision floating point number,
the total space requirement is only 8MB.

3.3 Personalization and Hashing
In Section 2 we have discussed how personalization can be

used to mitigate the effect of noisy labels from users. In im-
plementing such a setting, a dimensionality reduction tech-

(a) Global Classifier

(b) Hybrid Classifier

Figure 3: Influence of r on global and hybrid classi-
fier performance with malicious users

nique such as the hashing-trick becomes critical– without
such a technique, even for the trec07 dataset, with around
5000 users and over 500,000 tokens, the total number of
dimensions needed would be over 2.5 billion. However, the
hashing-trick comes with a compromise of its own – one must
ensure that the number of hash bins is sufficiently large, and
the hash-function is sufficiently random so as not to avoid
a lot of collisions. Since the classifiers are now trained on
the hash-space, a collision of a spam-indicative feature with
one that indicates ham, would be detrimental to the perfor-
mance. In [7] we show that under certain assumptions on
the hashing function and the number of hash bins, we can
prove theoretical bounds on the distortion that is caused by
the hashing. The number of hash bins that we need in prac-
tice is much less than our theoretical bounds. In this section
we vary both the number of hash bins and the fraction of
malicious users. Again we consider the SCR when the HMR
is bounded by 1% – Figure 3 shows our findings.

Figure 3(a) presents the spam catch rate for a global spam
filter for different numbers of hash bins, the three colored
lines indicate three different levels of malicious activity: the
fraction p of malicious users being {0%, 20%, 40%}. Figure
3(b) represents the same experiment only with the combined
hybrid classifier. Focusing on the case of p = 0%, we note
that, as before, both classifiers do very well. The hybrid
classifier actually does slightly worse than the global classi-
fier with r = 212, this is likely due to the vastly increased
number of tokens being mapped into each hash bin in the
hybrid filter. This barrage of collisions may result in con-
flicting signals, and therefore lowered accuracy.

With malicious users, both global and hybrid classifiers re-
quire more hash bins to achieve near-optimum performance.

Since the hybrid classifier has more tokens, the number of
hash-collisions is also correspondingly larger. With 212 hash
bins, for instance, the average number of collisions per hash
bucket is over 60, 000. Correspondingly, the hybrid classifier
does worse than the global one for 212 hash bins. How-
ever, the situation quickly is quickly remedied by offering
increased storage size; with 218 hash bins, the hybrid classi-
fier achieves approximately 90% SCR, beating the 80% SCR
achieved by the global-only classifier. Further increases in
the number of hash bins does not improve the classification
performance significantly.

4. CONCLUSION
This work demonstrates the hashing-trick as an effective

method for collaborative spam filtering. It allows spam fil-
tering without the necessity of a memory-consuming dictio-
nary and strictly bounds the overall memory required by the
classifier. Further, the hashing-trick allows the compression
of many (hundreds of thousands of) classifiers into a single
finite-sized weight vector. This allows us to run personalized
and global classification together with very little additional
computational overhead. We provide strong empirical ev-
idence that the resulting classifier is more robust against
noise and absorbs individual preferences that are common
in the context of open-membership spam classification.

5. REFERENCES
[1] G. Cormack. TREC 2007 spam track overview. In The

Sixteenth Text REtrieval Conference (TREC 2007)
Proceedings, 2007.

[2] K. Ganchev and M. Dredze. Small statistical models by
random feature mixing. In Workshop on Mobile
Language Processing, Annual Meeting of the
Association for Computational Linguistics, 2008.

[3] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie,
J. Friedman, and R. Tibshirani. The elements of
statistical learning. Springer New York, 2001.

[4] R. Jenkins. Algorithm alley. Dr. Dobb’s Journal,
September 1997. Source code available at
http://burtleburtle.net/bob/hash/doobs.html.

[5] J. Langford, L. Li, and A. Strehl. Vowpal wabbit online
learning project. Technical report,
http://hunch.net/?p=309, 2007.

[6] K. Spackman. Signal detection theory: Valuable tools
for evaluating inductive learning. In Proceedings of the
sixth international workshop on Machine learning table
of contents, pages 160–163. Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA, 1989.

[7] K. Weinberger, A. Dasgupta, J. Attenberg,
J. Langford, and A. Smola. Feature hashing for large
scale multitask learning. In ICML, 2009.

[8] W. S. Yerazunis. Sparse binary polynomial hashing and
the CRM114 Discriminator. In MIT Spam Conference,
2003.

